
MZA Associates Corporation

RWPII – 01/14/081

Version 2007B

Hands-On Workshop

Extended Version with the
BLAT (V1.0) Model and
Other Demonstrations

Bob Praus
Steve Coy

Keith Beardmore

MZA Associates Corporation
2021 Girard SE, Suite 150
Albuquerque, NM 87106
Voice: (505) 245-9970
Fax: (505) 245-9971
praus@mza.com

MZA Associates Corporation

RWPII – 01/14/082

Workshop Program

A Reasonable Schedule for a One Day Course

Prologue WaveTrain Installation 0800 - 0830
Block 1 Introduction to WaveTrain 0830 - 0930

(separate chart package)
Break 0930 - 1000

Block 2 Beginner’s Workshop 1000 - 1200
Break 1200 - 1300

Block 3 Continuation of Beginner’s Workshop 1300 - 1400
Block 4 Introduction to Beam Control Simulation 1400 - 1500

(separate chart package)
Break 1500 - 1530

Block 5 Demonstration of Beam Control Simulation & 1530 - 1700
Independent Study

MZA Associates Corporation

RWPII – 01/14/083

WaveTrain Installation

Install Microsoft Visual C++ (optional)
Install Matlab (optional)
Install WaveTrain & tempus from DVD
Visual Studio Express 2005 is installed if
no C++ is found

•Matlab R2007A/B recommended
•Visual Studio 2003 / 2005 recommended
•Visual Studio 2008 not tested
•Visual Studio Express supported

MZA Associates Corporation

RWPII – 01/14/084

You will have a desktop icon

An MZA entry on the programs
menu

Other programs installed, such
as Visual Studio, may also be
listed on the programs menu

WaveTrain Post-Installation

On the first attempt to use
WaveTrain, you will have to
request a key to unlock
WaveTrain (via email)

If Matlab is present, the WaveTrain and
tempus mfile paths will be added to your
Matlab path

MZA Associates Corporation

RWPII – 01/14/085

WaveTrain v2007B
Beginner’s Workshop

In this workshop you will build a model of a telescope system imaging a point source
through turbulence.
You will then use the model to perform a simple parameter study, and look at the results.
Model features:

Records amplitude and phase at the pupil plane, and intensity at the focal plane.
Models platform motion, source motion, and/or wind.
Uses standard turbulence models, e.g. Clear 1 or Hufnagel-Valley, and/or user-defined models.
All major system variables are parameterized, so they can be changed without changing the model itself.

MZA Associates Corporation

RWPII – 01/14/086

Create a New System Model

WaveTrain is built atop tempus, a
general-purpose simulation tool. In
tempus, a system model is defined in
terms of its interface (inputs, outputs,
and parameters), its subsystems, and
the connections between them. Each
system model is mapped into a
portable C++ class via automatic
source code generation.

To begin, start the GUI by selecting
the WaveTrain desktop icon or
MZA->WaveTrain under the Windows
Start-Programs menu. This will bring
up the tempus visual editor (TVE) top-
level window.

Click on which will bring up the
System Edit Window. When System
Editor window comes up it already
has a new system model, called
“NewSystem”, loaded by default.

MZA Associates Corporation

RWPII – 01/14/087

Open the Component Library

Go back to the top-level window, and click on
again, which will bring up a second System Editor
Window.

Click on File->Open->Browse, which will bring up a
file selection window.

Navigate to c:/Program Files/mza/wavetrain/v2007B
and select AllLibs.tsd, the top level WaveTrain
component library. Select it, then click “Open”.

Double click on WtLib, the primary component library

You will see that WtLib
contains six components,
each of which is a more
specialized sublibrary:

AtmosLib
ControlsLib
OpticsLib
SensorLib
SignalLib
SourceLib

MZA Associates Corporation

RWPII – 01/14/088

Copying a component from the library

On your screen you should now have the
tempus top-level window and two System Edit
Windows, one for WtLib, one for NewSystem,
as shown in the upper right.

Double-click on SourceLib to “descend” into
it. Click on PointSource to select it, then use
Ctrl-C to copy it into the paste buffer.

Click on the NewSystem window, then use
Crtl-v to paste a PointSource, which will
appear in the upper left. Move it to the upper
right by clicking on it, holding the button
down, moving the mouse to the desired spot,
then releasing it.

Click on the WtLib window, then double-click
on white space to ascend back to the top of
the library.

MZA Associates Corporation

RWPII – 01/14/089

Copy the rest of the components

First, descend into OpticsLib, and get
two copies of TransverseVelocity
one Telescope
one IncomingSplitter

Next, ascend back to the top of
WtLib, then descend into AtmosLib,
and get

one AtmoPath

Finally, descend into SensorLib, and
get

one Camera
one SimpleFieldSensor.

Arrange the components as shown in
the upper window (approximately).

Click on the Expand button (four
diverging arrows) at the top of the
window, near the left; this will give
you more room to make connections.

MZA Associates Corporation

RWPII – 01/14/0810

Save Your Work

As with all applications, it is a good idea to
save your work on a regular basis so that if
some sort of crash or mistake happens you
can recall your work.

Click on File->Save As…, which will bring
up the window shown at the bottom.
Navigate to the directory c:\wtruns\wtdemo.
The actual directory doesn’t matter, but its
better if you have a special directory for
each WaveTrain model that you work with.

Type in the filename WtDemo.tsd. The
actual name doesn’t matter, but we use a
standard name to keep the tutorial the same
for everyone.

Click on Save.

As you go along, you can save your work
periodically by clicking on File->Save, or
the disk icon.

MZA Associates Corporation

RWPII – 01/14/0811

Connect components
Click the toolbar button with image of
the subsystem. A small menu will pop
up.
Select the button with a light blue
“receptor” shape, also shown
depressed at right. This will display all
subsystem inputs.

Connect outputs to inputs as shown,
by clicking on the pointed tip of each
output, and dragging it to the receptor
of the appropriate input.

Select the button
with a dark blue
arrowhead, shown
depressed at right.
This should cause
all subsystem
outputs (dark blue
arrows attached to
the bottom of each
subsystem) to be
displayed. If it
does not work,
click on white
space and try
again.

Note that we have not bothered to
make connections for outgoing light,
because in this model there isn’t any.

You can reverse
the orientation of
an input/output by
double clicking it

MZA Associates Corporation

RWPII – 01/14/0812

Check Subsystem Parameters

Undisplay the subsystem inputs and
outputs.

Click on the button with the medium
gray rectangle (lower left corner of
the menu), which will display the
subsystem parameters, as shown
below.

For each parameter, the parameter
name appears to the left, and its
“setting expression” appears to the
right, if any has been specified.

Setting expressions are evaluated
using the parameters of the
containing system, but we have not
yet defined any.

MZA Associates Corporation

RWPII – 01/14/0813

Subsystem Parameter Values

MZA Associates Corporation

RWPII – 01/14/0814

Add Needed System Parameters

Right-click on white space, which will
bring up a small window with options.

Select the second one, Properties of
WtDemo, which will bring up the
window shown in the lower left.

Click on the Interface tab. In the
Parameters section, click on the “+” to
create the first parameter & enter
“float”, “range”, & “52.6e3” as shown
at right.

WaveTrain and tempus
names are case

sensitive!
WaveTrain

units are mks!

• With the first parameter selected
click the “copy” &
“paste” buttons to
create eight additional
parameters, giving them the types,
names, and default values shown.

• Click OK.

MZA Associates Corporation

RWPII – 01/14/0815

Add More System Parameters
Click on the subsystem
parameter button again to
undisplay them.

Click on either of the
TransverseVelocity blocks,
then Ctrl-click on the other,
selecting both.

Click on the subsystem
parameter button once more,
which will display the
parameters of only the
TransverseVelocity blocks.

Click on one of the “vx”
setting expressions, and
enter “wind” and hit return.
This will bring up the window
shown. Enter “10.0” under
“Value” and hit return. Click
“Add As Parameter”.

Using the same approach, set
the “vx” for the other
TransverseVelocity system to
“-wind”.

WaveTrain and tempus
names are case

sensitive!

MZA Associates Corporation

RWPII – 01/14/0816

Finish the model and save

Undisplay the TransverseVelocity parameters.

Press the Contract button (four converging arrows) which will bring the blocks back close together.

Depending on your esthetic preferences, you may wish to undisplay the subsystem labels and/or
toolbars for a cleaner look; there are buttons for each.

The system model is complete; now you will save the final version to disk. Click on File->Save or use
the toolbar save button.

MZA Associates Corporation

RWPII – 01/14/0817

The Completed Model

You have built a complete model of a telescope system imaging a point
source through turbulence, with the following features:

Records amplitude and phase at the pupil plane, and intensity at the focal plane.
Models platform motion, source motion, and/or wind.
Uses standard turbulence models, e.g. Clear 1 or Hufnagel-Valley, and/or user-defined models.
All major system variables are parameterized, so they can be changed without changing the
model itself.

Next, you will use the model to perform a parameter study.

MZA Associates Corporation

RWPII – 01/14/0818

Create a new “Runset”
for a parameter study

A Runset describes a set of related simulation
runs, in which any number of model
parameters can be varied, either
independently or in groups. Each Runset is
mapped into a portable C++ main program via
automatic source code generation.

Go to the tempus toolbar window, and click on
the middle button (tempus runset editor)
which will bring up the “TRE” window, shown
at right.

Click on File->New->Runset … which will bring
up the window shown at the bottom. Navigate
to the c:/wtruns/wtdemo, and select
WtDemo.tsd.

Click Open, which will create a new Runset for
the just-created system model.

A dialog box will be displayed which asks you
what to name the Runset. This identifies the
particular group of settings with which you are
going to run the simulation. Use a simple
name for now like t1. Click OK.

MZA Associates Corporation

RWPII – 01/14/0819

Specify the runs to be done,
and the outputs to be recorded

Initially, the Runset will have all system parameters set to the defaults you
specified when you built the system. The stop time for each run will be set
to zero, and no outputs recording will be set up.
Set the stop time to 0.005
Click the button (Recorded Outputs) to display a window for
specifying output recording. Click on checkboxes next to each of the two
outputs. Click “OK”.
Click the button “+” to create space for one run variable, then enter “int”
“iturb” “$loop(3)”; this will create a for-loop, resulting in three separate
simulation runs.
Set clear1Factor to “[iturb]:{0.5,1.0,2.0}”; so its value will change with each
loop iteration.

WaveTrain and tempus
names are case

sensitive!

MZA Associates Corporation

RWPII – 01/14/0820

Execute the Runset

Click on Build->Execute. This will automatically save
the Runset Information to disk, generate the C++ main
program, compile it, link it, and execute it.

• After a run is complete you should close
the Command Line window and tempus
Runset Monitor that was opened during
execution.

You could use the toolbar button to run instead.

Shortly after execution begins, a “tempus Runset
Monitor” will appear. This provides information
such as elapsed time, disk space used, etc. When
execution is complete, it will appear as shown.

MZA Associates Corporation

RWPII – 01/14/0821

Load the results into Matlab

tempus simulation outputs are stored in
specially formatted random access files
called “trf” files which preserve the
structured character of the data, and
support interactive browsing without
having to load the entire file.

tempus provides a rich set of
mechanisms for accessing and operating
upon trf files, including many designed
for use from within Matlab, either at the
command line, or from within m files.

To look at the results from the just-
completed Runset, open a Matlab
session, and cd to the appropriate
directory.

Open the file, then bring up an interactive
browser using the following commands:

» t=trfopen('WtDemoRunt11.trf')
» s=trfsel(t)

Click on Select All Runs, then Select All
Variables, then Load, which will load all
the recorded data.

You must have the WaveTrain and tempus
mfile paths in your Matlab path before you
can use the Matlab functions.

MZA Associates Corporation

RWPII – 01/14/0822

Look at the results in Matlab

Data can be loaded into
Matlab in various forms;
in this example we have
loaded it into a structure.
Once the data has been
loaded, all the
functionality of Matlab is
available - analysis,
plotting, movies, etc.

MZA Associates Corporation

RWPII – 01/14/0823

Alternatively, look at results in TrfView

TrfView is a recent addition to
WaveTrain that enables basic
plotting directly from TRE.
On first use, you will be prompted to
associate .trf files (you can also do
this later from TrfView Options)

MZA Associates Corporation

RWPII – 01/14/0824

Look at results in TrfView

Right-click on variable name
& select “Show” or “plot”
E.g. Field amplitude & phase

MZA Associates Corporation

RWPII – 01/14/0825

Look at results in TrfView

E.g. Camera image

Simulation Parameter
values are also viewable

MZA Associates Corporation

RWPII – 01/14/0826

Extended Analysis:
Uncorrelated Data

Go to the System Editor for WtDemo.
Display the parameters of the AtmoPath
and elevate the atmoSeed parameter, by
right–clicking on it and selecting Elevate in
the small window that pops up.

Select File->Save. When it asks if you want
to update the Runset, click Yes.

Go to the TRE.

Choose File->Save As…,
and save a new Runset t2.

Add a run variable called irand and set it to
$loop(10) (copy/paste iturb & edit).

Change Stop Time to 0.0001.

Change nscreen to 10.

Change wind to 0.0.

Set the newly-created atmoSeed parameter
to [irand]:seedSequence(-987654321, irand)

Build->Execute. This will take a minute or
so…

MZA Associates Corporation

RWPII – 01/14/0827

Anatomy of a trf File

Each trf file is like a database; organized into
runs and variables.

The number of runs is equal to the product of the
value of all loop variables.
For this case:

nr = iturb × irand = 10 × 3 = 30.
The number of variables per run is less than or
equal to the number of variables selected by the
user for recording.

It can be less than the number selected
because it is possible that a variable which
was selected for recording does not get
computed during execution.

For this run 2 variables were recorded.
A time history of each variable is stored. The
precise times and the number of times that a
variables data is stored is dependent on:

The amount of simulation time per run.
User recording settings.
Simulation execution logic.

Each type of data is stored in a fairly simple
stream format.

trf files also contain the run
variable and parameter settings.

MZA Associates Corporation

RWPII – 01/14/0828

Anatomy of a trf Handle

In Matlab, trf files are incrementally loaded into a structure of the following
form:

t.r(nr).v(nv)
The jth variable for the ith run is stored in a structure at t.r(i).v(j).

When a variables’ data is read from disk, its is stored as a time history:
t.r(i).v(j).t contains the virtual time at which the data was recorded.
t.r(i).v(j).d contains the data. It is always two dimensional, nd x nt, where nd is the
number of elements required to store the data and nt is the number of times the
data was recorded.

A scalar quantity is stored as:
t.r(i).v(j).d(1:1,1:nt)

A two-vector is stored as:
t.r(i).v(j).d(1:2,1:nt)

A 64x64 grid is stored as:
t.r(i).v(j).d(1:4096,1:nt)

The present example has 1 time-step for 2 variables for 30 runs
s2.r(1:30).v(1).d(1:5625,1:1) is a complex array representing the light hitting the
receiving aperture.
s2.r(1:30).v(1).d(1:4096,1:1) is real array representing the image of the distant
point source.

trf handles also contain run variable and
parameter settings.
You need not load an entire file. Data is
loaded incrementally.
trf handles contain a lot of ancillary
information.

MZA Associates Corporation

RWPII – 01/14/0829

Process Uncorrelated Data
shops1.m and shops2.m

Add the workshop scripts to your path
path('C:\Program Files\MZA\wavetrain\v2007B\examples\wtdemo\scripts',path);

Load the data
>> t2=trfopen('WtdemoRunt21.trf');
>> s2=trfload(t2); % trfload is simpler than trfsel and is used more often.

Review and run the script in shops1.m to calculate the following quantities from
the complex field.

>> edit shops1.m <F5>
>> disp(niv)

Normalized irradiance variance, σI
2 = (< I2 > / <I>2) – 1

Rytov number (log-amplitude variance) is approximately σI
2/4.

>> disp(pcstrehl)

Phase corrected Strehl, Irel = <<A>2/<I>>

Review and run the script in shops2.m to calculate the following quantity from
the point source image.

>> edit shops2.m <F5>
Time-averaged point spread function (PSF)

Plot the data with shops12p.m
>> edit shops12p.m <F5>

MZA Associates Corporation

RWPII – 01/14/0830

Processed Results
shops12p.m

MZA Associates Corporation

RWPII – 01/14/0831

Extended Analysis:
Correlated Data

Go to the Runset Editor.
Open runset t2.
Choose File->Save As…, and name
the new Runset t3.

Change iturb to $loop(1).
Change irand to $loop(1).
Change clear1Factor to a single value
(e.g., 1.0).
Change wind to 20.0.
Change Stop Time to 0.1.
Build->Execute. This will take about
four minutes…

MZA Associates Corporation

RWPII – 01/14/0832

Monitor the
Simulation in the trm

While the simulation is running, right click on the tempus
Runset Monitor (trm) and choose Messages.
Here you can view detailed messages which track the
execution status.

MZA Associates Corporation

RWPII – 01/14/0833

Process Correlated Data
shops3.m

Load the data
>> t3=trfopen('WtdemoRunt31.trf');
>> s3=trfload(t3); % trfload is simpler than trfsel and is used more often.

Review and run the script in shops3.m to create a movie of the point source
propagation data.
To repeat the movie use movie(mb).

MZA Associates Corporation

RWPII – 01/14/0834

The Whiteley Tutorial
Closed-Loop AO Example

Matt Whiteley (then of AFRL/DEBA,
now with MRC) created a three-day
WaveTrain tutorial workshop in which
users incrementally build up a
closed-loop adaptive optics system.

The workshop also serves as an
introduction to fundamental wave optics
simulation concepts.
The tutorial materials are on the Workshop
disk in the directory “whiteleyTutorial”.

Since we don’t have three days to go
through all of the steps of building
the model, we will concentrate on
working with the complete model.
The tutorial will now proceed a bit
more quickly, assuming that you are
starting to get the feel for how things
work in the GUI.

Instructions are less explicit.
Emphasis will be placed on the model,
rather than the mechanics.

MZA Associates Corporation

RWPII – 01/14/0835

Copy the directory whiteleyTutorial to the c:\wtruns directory.
(Available from: http://www.mza.com/doc/PPT/whiteleytutorial.zip)

Rename the directory to wttut.
Display the directory properties. Uncheck read-only. Click OK. When it asks,
tell it to propagate the change to subdirectories.
Close the tve and restart it.
Open the System Editor window.
File->Open->Browse…, traverse to
c:\wtruns\wttut and select the
system TutI.

If any subsystems are marked ‘obsolete’, save the system to update them

Closed-Loop AO:
Get Ready to Run

MZA Associates Corporation

RWPII – 01/14/0836

The Block Diagram

MZA Associates Corporation

RWPII – 01/14/0837

Poke Around

Navigate into wfsandrecon. Go back up.
Navigate into atmosphericpath (WindAtmoPath). Go back up.
Navigate into telescope (it’s a library system). Go back up.
Display various inputs, outputs, and parameters to get a feel for the model.

MZA Associates Corporation

RWPII – 01/14/0838

Inspect the Runset.
This Runset has two runs, looping only over gain_index.
gain_index is used to subscript trk_gain_values and AO_gain_values.
The first run is open-loop because trk_gain_values[0] and AO_gain_values[0] are zero.
The second run is closed-loop because trk_gain_values[1] and AO_gain_values[1] are one.

Make a Run

C++ and the tve use zero-based arrays.
Matlab uses one-based arrays.

• Start the TRE (Runset Editor)
• File->Open…->TutI->SetA

• If the system was modified
more recently than the runset,
the runset will be marked
“obsolete” & the toolbar is
grayed out. Update the runset
from the Edit menu

MZA Associates Corporation

RWPII – 01/14/0839

Create a new runset: File->Save As…, SetC.

Change Stop Time to 0.1.
Change setting for tdm to load the file
"C:/Program Files/MZA/wavetrain/v2007B/predata/nop236qa.mat "

Replace the first three digits
of the number in the AtmSeed
setting to your favorite three
digit number.
Build->Execute.
The run will take about ten
minutes.

Make a Run

MZA Associates Corporation

RWPII – 01/14/0840

The system and runset will not compile as-is,
due to updates to WaveTrain since they were
written.

This gives us a chance to show how
to launch the debugger …

… Debug …

Find problems
in C++ via Visual
Studio

Fix in system /
runset

MZA Associates Corporation

RWPII – 01/14/0841

Fix runset

Fix & Run

Fix system WindAtmoPath

MZA Associates Corporation

RWPII – 01/14/0842

Create a Movie
shops4.m

Start Matlab.
>> cd c:/wtruns/wttut
>> tia=trfopen('TutIRunsetC1.trf');sia=trfload(tia);trfvlist(sia)

Review and run the script in shops4.m to display a movie showing
open-loop and closed loop runs side-by-side.
To repeat the movie use movie(mb).
Verify that the open-loop and closed-loop runs begin with the
same conditions with movie(mb(1)).

First Frame

After the Loop is Closed

MZA Associates Corporation

RWPII – 01/14/0843

Run a Vacuum Case

To calculate Strehl, we need a propagate through a vacuum.
Go to the TRE (Runset Editor).
File->Save As…, SetV.
Change Stop Time to 0.0001.
Change gain_index to $loop(1).
Change nscreen to 1.
Change alpha to 0.0.
Build->Execute.
This will run fast.

MZA Associates Corporation

RWPII – 01/14/0844

Compute Strehl
shops5.m

>> tiv=trfopen('TutIRunsetV1.trf');siv=trfload(tiv);trfvlist(siv)
Review and run the script in shops5.m to which computes the time-averaged
open and closed-loop Strehl.

Be sure to look at the use of trfavg in the script.

Also try figure;mesh([dlimg,climg,olimg]) and figure;mesh([dltbd,cltbd,oltbd]).

MZA Associates Corporation

RWPII – 01/14/0845

Baseline Adaptive Optics and Track
(BLAT) Model

A closed-loop AO and track system using a standard tip-tilt centroid
tracker and a tilt-removed least-squares reconstructor on a Shack-
Hartmann wavefront sensor.

MZA Associates Corporation

RWPII – 01/14/0846

Copy the directory BLAT01 from
C:\Program Files\MZA\wavetrain\v2007B\examples to the c:\wtruns directory.
Display the directory properties. Uncheck read-only. Click OK. When it asks,
tell it to propagate the change to subdirectories.
In a file browser window Navigate to the c:\wtruns\BLAT01 directory.
Double-click on BLAT01.tsd and then on BLAT01AtoG.run.

Open the BLAT01 Model

MZA Associates Corporation

RWPII – 01/14/0847

Aside: ‘Obsolete’ systems & runsets

If any library components have
been updated since the system
was last saved they will be
marked ‘obsolete’
Simply save the system to update
any obsolete subsystems

If the system was modified more
recently than the runset, the
runset will be marked “obsolete”
& the toolbar is grayed out.

Update the runset from the Edit
menu

MZA Associates Corporation

RWPII – 01/14/0848

Run the BLAT01 Model

This will take about
three minutes…

Note how the atmosphere is specified
We will discuss an alternative method
(Turbtool) later

Edit the setting for tdm so that the file loaded is
"C:/Program Files/MZA/wavetrain/2007B/predata/fdf.mat“

Run the model by clicking on the exclamation point.

MZA Associates Corporation

RWPII – 01/14/0849

Process and Plot the Data
BLAT01_01.m (in c:\wtruns\ BLAT01\)

MZA Associates Corporation

RWPII – 01/14/0850

Turbtool: Atmosphere Specification

MZA Associates Corporation

RWPII – 01/14/0851

WaveTrain Object Orientation

Using the OOP model, each of the blocks in the block diagram are
objects of type System.

Systems have static Parameters, dynamic Inputs, and generate dynamic
Outputs.
Systems must respond to requests for information following the
requirements of the tempus System interface specification.
This is done by implementing “virtual methods” (C++ polymorphism).

The key to the wave optics aspect of the code is the object type
WaveTrain which implements the relationship between light source
and receiver necessary to compute physical propagation quantities.

WaveTrain is used as both an Input and an Output type.
A Wave represents coherent light and travels through WaveTrain
connections.
A WaveSource is a System that generates Waves.
A WaveMap is a System that modifies an incident Wave to create a
transmitted Wave.
A WaveReceiver is a System that accepts and integrates incident
Waves to compute a measurement (usually a sensor Output).

MZA Associates Corporation

RWPII – 01/14/0852

WaveTrain Code
WaveTrain has “scripts” too

Each composite system declares and initializes its subsystems:
pointsource(this, "pointsource", wavelength, 1.0e6, 0.0, 0.0),
transversevelocity1(this, "transversevelocity1", -wind, 0.0, 0.0, 0.0),
transversevelocity3(this, "transversevelocity3", wind, 0.0, 0.0, 0.0),
atmosphericpath1(this, "atmosphericpath1",

AcsAtmSpec(wavelength,nscreen,clear1Factor,hPlatform,hTarget,range),
atmoSeed, propnxy, propdxy, 1.8, 0.05,
-propnxy*propdxy/2.0, propnxy*propdxy/2.0, -propnxy*propdxy/2.0, propnxy*propdxy/2.0,
-propnxy*propdxy/2.0, propnxy*propdxy/2.0, -propnxy*propdxy/2.0, propnxy*propdxy/2.0,
propdxy, 0.0, 0.0, 0),

camera1(this, "camera1", 1.0, wavelength, wavelength, apdiam/propdxy,
propdxy, 64, wavelength/apdiam, 0.0),

simplefieldsensor1(this, "simplefieldsensor1", wavelength, apdiam/propdxy, propdxy),
telescope1(this, "telescope1", range, apdiam/2.0, 0.0),
incomingsplitter1(this, "incomingsplitter1"),

Then the subsystems inputs and outputs are connected:
simplefieldsensor1.incident <<= incomingsplitter1.incomingTransmitted2;
camera1.incident <<= incomingsplitter1.incomingTransmitted;
incomingsplitter1.incomingIncident <<= telescope1.incomingTransmitted;
telescope1.incomingIncident <<= transversevelocity3.incomingTransmitted;
transversevelocity3.incomingIncident <<= atmosphericpath1.incomingTransmitted;
atmosphericpath1.incomingIncident <<= transversevelocity1.incomingTransmitted;
transversevelocity1.incomingIncident <<= pointsource.transmitted;

Then the simulation is run:
advanceTime(stopTime);

blue names are systems
green names are inputs
red names are outputs

cyan names are regular variables

MZA Associates Corporation

RWPII – 01/14/0853

A Complete WaveTrain Run

#include "tempus.h“
#include "Recorders.h“
#include "FileSys.h"

#include "PointSource.h"
#include "AtmoPath.h"
#include "Telescope.h"
#include "Camera.h"

#ifndef NO_TEMPUS_SMF_MONITOR
#include "TempusStatusSMF.h"

#endif

main(int argc, char* argv[])
{
//
// Decoration related to monitoring the system during the run.
//
#ifndef NO_TEMPUS_SMF_MONITOR

double stopTime = 0.0050;
char *___outfile = "WtDemoRunHand.trf";
char *___trfname;
char *___smfname;
parseName(argc, argv, ___outfile, &___smfname, &___trfname, stopTime);
TempusStatusSMFWriter ___smfWriter(___smfname, ___trfname, "", 1);
setCurrentSMF(&___smfWriter);

#endif
Universe ut1("Hand");
//
// Construction of all the systems. Variables could be used in the parameters
// below rather than the constants.
//

PointSource pointsource(NULL, “ps", 1.0e-06, 1.0e+06, 0.0, 0.0);
AtmoPath atmosphericpath(NULL, “ap",

AcsAtmSpec(1.0e-06,10,2.0,2413.0,2728.0,52600.0),
-765432189, 256, 0.02, 1.8, 0.05,
-256*0.02/2.0, 256*0.02/2.0, -256*0.02/2.0, 256*0.02/2.0,
-256*0.02/2.0, 256*0.02/2.0, -256*0.02/2.0, 256*0.02/2.0,
0.02, 0.0, 0.0, 0);

Telescope telescope(NULL, “tel", 52600.0, 1.5/2.0, 0.0);
Camera camera(NULL, “cam", 1.0, 1.0e-06, 1.0e-06, 1.5/0.02, 0.02, 64,

1.0e-06/1.5, 0.0);

//
// Connection of the systems.
//

atmosphericpath.incomingIncident <<= pointsource.transmitted;
telescope.incomingIncident <<= atmosphericpath.incomingTransmitted;
camera.incident <<= telescope.incomingTransmitted;

//
// Construction and connection of non-connected inputs.
//

Output<bool> camera_on(&camera, "cam_on", true);
Output<double> camera_ei(&camera, "cam_ei", 1.0e-3);
Output<double> camera_el(&camera, "cam_el", 1.0e-6);
Output<double> camera_si(&camera, "cam_si", -1.0);
camera.on <<= camera_on;
camera.exposureInterval <<= camera_ei;
camera.exposureLength <<= camera_el;
camera.sampleInterval <<= camera_si;

//
// Decoration related to recording the outputs.
//

ParamSet pst1;
RecorderFile rft1(NULL, "rft1", ___trfname, ParamSet_stringify(pst1),

pst1);
GridRecorder<float> rft11(NULL, "rft11", "camera.fpaImage",

"Grid<float>", "image", true, (float)0.0, 0.0);
rft11.dr <<= rft1.dr;
rft11.i <<= camera.fpaImage;

//
// Run the simulation.
//

advanceTime(stopTime);
}

// Black code is always the same.
// Blue code is dependent on the problem.
// Green code is administrative in nature.
// Gray code supports optional functionality.

// To run:
// setupwt
// mktr WtDemoRunHand
// WtDemoRunHand

MZA Associates Corporation

RWPII – 01/14/0854

Code Generation Strategy

Simple systems are built by the GUI as System templates.
The programmer is expected to implement virtual methods which define the
system’s behavior.
Because many systems have common features, inheritance and polymorphism
is used a lot.

Composite systems are coded as complete Systems
Parameters are constructor arguments.
External inputs and outputs are member objects.
Subsystems are declared and initialized using expressions involving the
parameters of the system.
Subsystems are connected using the simple overloaded operator <=.
Miscellaneous code handles default unconnected inputs.

Runsets are coded as the main program.
The code contains explicit loops for loop variable.
The run variables and top-level system parameters are declared and set. Run
variables and system parameters which are dependent on loop variables inside
the appropriate loops.
The top-level system is constructed using the system parameters.
Recording systems are constructed and connected.
Each run is executed with a call to advanceTime(…).
There is miscellaneous code which takes care of runset monitoring and setting
up the output trf file.

